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A WEAK VERSION OF & WHICH
FOLLOWS FROM 2% < 2™

BY
KEITH J. DEVLIN AND SAHARON SHELAH'

ABSTRACT

We prove that if CH holds (or even if 2" < 2™), then a weak version of © holds.
This weak version of © is a O-like principle, and is strong enough to yield some
of the known consequences of <.

§1. Introduction

The combinatorial principle < says that there are functions f.: a =2 = {0, 1},
a < w,, such that for every function f: w,— 2, the set {a < w,]f[a =f.}isa
stationary subset of w,. The principle was first formulated by Jensen, who proved
that it holds if we assume V = L, that it implies CH (but not conversely), and
that it implies the negation of the Souslin hypothesis. For further details we refer
the reader to [1] and [2].

Let ® denote the following assertion:

For each F:23—2 there is a g €2* such that for any f € 2*, the set
{a € wxlF(f[a) = g(a)} is stationary.

(By 2* we mean the set {f|f: A —2}. We set 22 = U,.,2%)

Of course, for particular F the existence of a function g as in ® may not be at
all problematical (e.g. if F is constant). But as we shall indicate, @ itself is quite a
strong assumption. It is easily seen to be a consequence of <. Indeed, if
{fa la < wy) is a O-sequenee, then given F we set g(a) = F(f.) to verify ®. This
indicates why we refer to ® as a “weak version of O”.

The main result of this paper is that 2" < 2" implies ®. We also prove that ®
yields some known consequences of <.

" The second author wishes to thank the United States-Israel Binational Foundation for partially
supporting his research by Grant 1110.
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A generalisation of ® is suggested by generalisations of <. Jensen, in fact,
proved not only that © follows from V = L, but the more general principle O(S),
where S is any stationary subset of w;, and where O(S) is the same as < except
that the f,’s are only defined for a € S. (Clearly, < is a consequence of any
instance of O(S).)

If S C w:, we denote by ®(S) the assertion that for any F-= 24— 2 there is a
g €2* such that for any f €2*, the set {«a € S lF(f[a) = g(a)} is stationary.

Clearly, if ®(S) holds, then S must be stationary. Let us call a subset S of w,
small if ®(S) fails. We prove that the small sets form a normal ideal. Even
assuming CH, however, we cannot prove that every stationary set is not small.
We refer the reader to [6] for details on this point.

We work in ZFC set theory and use the usual notation and conventions. In
particular, an ordinal number is the same as the set of all smaller ordinals, and a
cardinal number is an initial ordinal. We reserve lower case Greek letters for
ordinals. The sequence of infinite initial ordinals commences thus: o, w;, w,, - -,
and N, denotes w, considered as a cardinal. The meanings of the terms closed
unbounded (“club’) and stationary applied to subsets of w, is assumed known.

(See, e.g., [1].)

§2. The evolution of ©

It is perhaps illuminating to present a brief account of the evolution of the
principle ®.

One of the consequences of < is the result, W, that every Whitehead (abelian)
group of order N, is free. (See [4], or the presentation in (3). Also, [5] considers
the case of groups of order greater than N,.) Against this is the result that if we
assume Martin’s Axiom together with 2" >N, then there is a non-free
Whitehead group of order R,. (See [4].) Naturally, it was hoped that W was not a
consequence of CH alone. And in trying to establish this fact, Shelah noticed
that W fails if C(S) holds for all stationary sets S C w,, where C(S) is the
following principle (to be considered later in §5 — where we also attempt to
explain its meaning!):

C(S):  if for each limit ordinal 8 € S there is an increasing w-sequence 7,
converging to 8, and if k, € 2%, then for some k € 2* it is the case that
for all 8 € S, k(ns(n)) = ks(n) for all but finitely many n.

We shall see later that C(w,) is a consequence of Martin’s axiom plus 2 > &,.
And it is easily seen that 1 C(S) follows from <O(S). Shelah conjectured that
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C(w;) was consistent with ZFC+ GCH. Devlin refuted this conjecture by
showing that CH implies =1 C(w:). (In fact he proved that CH implies = C(B)
for any club set B C w;; moreover, the functions ks, k were allowed to map into
w and not just 2.)

Devlin’s original proof used metamathematical techniques (precisely, inner
models of set theory). Devlin, Jensen and Shelah all independently observed that
the proof could be modified to eliminate the use of inner models, and that the
assumption of CH could then be weakened to 2" < 2". Shelah took this a step
further by “‘extracting” from the proof the principle & (this extraction was so
trickly, that it is somewhat misleading to use the world “‘extract” at all), and
obtaining further consequences of ®, together with the results of §3, §6, §7.

§3. Small sets

Let F be the filter of subsets of w, generated by the club subsets of w,, # the
dual ideal. (Thus J is the ideal of non-stationary subsets of w,.) It is well known
that # and # are normal (i.e. in the case of %, if I, v < w,, are in #, so is
I={r€w|@v<r)(rE€L)}). In particular, both % and $ are countably
complete.

We say aset § C w, is small if there is F: 22— 2 such that for all g € 2 there
is f €2 such that {a € S !F(f[a) = g(a)} € 4. Let ¥ denote the collection of
all small subsets of w,. Clearly, ® is equivalent to the assertion o, & &.

3.1. THEOREM. ¥ is a normal ideal on w,.

Proor. Clearly, if S'C S € &, then §' € . It therefore suffices to show that
if {S.|v<w}C ¥ then S ={a € w|(Av < a)(a €S,)} € & Let F, testify the
smallness of S,, each v. Let h: w, X w; o w,, and let C ={a € w,fh”a Xa=a}.
Notice that C is club in w,.

We define F: 28— 2 as follows. Let f€2°, @ < w,. lf « € C and thereis v < a
with a € S,, pick the least such v and set F(f) = F,(f*), where f* € 2° is defined
by f*(r) = f(h(, 7)). Otherwise set F(f)=0.

Let g €2 be given. We construct an f € 2 for which {« € S |F(f[a)=
g(a)} € 4, thereby showing that § € &. For each v < w,, §, is small by F,, so we
can find f, €2“ such that N,={a €S, |F.(f.la)=g(a)}€ # Since J is
normal, N={a €w/|@v<a)(@aEN,)}E I Define fE2* by setting
f(h(v, 7)) = f.(r), each v, 7. Suppose that {a € S |F(fl a) = g(a)} € 4. Thus, as
C is club, E={a ESNC|F(fla)=g(a)} £ $. But suppose a € E. Since

" This remark is due to Devlin alone.
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a €S we can find v<a with a €S,. Let v be the least such. Then, by
definition, F(fla)= F,((fla)*). So as a € E, F.((f! a)*) = g(a). But for all
1<a, (fla)y(r)=(fla)(h(x1))=f(h(s7)=f.(r). Hence (fla)*=/.la,
giving F.(f.]a)=g(a). Thus a € N,. We have therefore shown that a €
E — (3v < a) (a € N,). In other words, E C N. Hence E € 4, which is absurd.
This proves that S € &, O

3.2. CoroLLARY. D holds iff ¥ is a non-trivial normal ideal on w,. O

§4. 2%<2 5P

4.1. THeoreM. (1) Assume 2" <2". Then ®.
(2) Assume A" <2, Then for every F: A&— 2 there is g € 2*t such that for
every f €A™, {a < wi|g(a)= F(fla)} is stationary.

Proor. We prove (1). The proof of (2) is similar.

Well, suppose @ fails. Then w, € ¥, so we can find F: 22— 2 such that for all
g €2 there is f € 2“ with (« € wllF(f[a) =g(a)}E€ % (Given any g, let f be
related to 1~ g as in definition of & to get this.)

Fix some one-one correspondence H between the set of all sequences of the
form (e, go, fo, " *, 8 fir * * * )u<p, Where a, B < w, and g,, f, € 2° for all v < 8, and
the set 2“.

Let g €2* be given. Pick f € 2* such that {a € w,|F(fla) = g(a)} € %, and
let CC w, be club with «a € C— F(fla)= g(a). By induction on n € w we
define functions g,, f, € 2, v < w.n, and club sets C, C w,, so that whenever
v<on C,Cla € wllF(f, [a)=g.(a)}.

Stage 1. (n=1). Foreach v<w, letg. =g f. =f, C.=C.

Stage n+1. (n=1). For each a < w,, let B,, be the least member of C,
greater than a and set:

(unsi (@) k < @)= H(Bans 8l Bauns fol Baum * * *» 8o I Banfo I Bams = * * Yoo

This defines gu..x €2 for all k € w. By hypothesis there are functions
fonsk € 2% such that A ..« ={a € w,]F(fka Ja)= guni (@)} € %, each k. Let
CoiiCC, N, A, be any club set now.
Clearly, for each g €2“ we may carry out such a definition. Let g5, f
v < w.w, and C§, n < w, be the sequences so defined when we commence with g.
Define an equivalence relation E on 2** now by: gEg’' iff:

(i) min(MN,..C%)=min(MN...CE) =y (say);
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(i) g8ly=g%ly and f3ly=f%]y forall » < w. .

Now, the equivalence relation E clearly has at most 2" equivalence classes.
But 2" < 2" and there are 2™ possible functions g. Hence we can find functions
g, g’ such that g# g’ and gEg’.

From now on we write g., f., C. for g%, f5, C%, and g!, f., C.for g8, f%, C¥%.
And we set C=,..C, C'=MN,_,C. Let (y,|p <w) be the canonical
enumeration of C, (y,|p < w,) that of C'.

We prove by induction on p that vy, =1v;, and that for all v < w. e,
g7 = &Y f.1v. = fulv,. This will, of course, yield the desired contradiction,
since, in particular, we shall have g = g,= g¢= g/, contrary to g# g’.

For p =0, the desired equalities hold because gEg’. And for limit p, the
induction step is trivial because ¥, = SUPo<p Yo, ¥» = SUPo<p ¥ o SO ASSUME NOW
the equalities for p. We prove them for p + 1.

For each n and each a<w, let M., = (Ban Lol Bam fol Bam ",
8. Bam fo [ Bam ** * )ocams With Ba.., etc. as above, and define M, , similarly for g'.
By definition, H(M,,,) = (gun+« (y,,)lk < w). But vy, € C, so this implies that
HM,, ) = (F(fon+x H‘p)’ k < w). So, by induction hypothesis, we get H(M,, ) =
(F(finsilvo lk < w), and reversing the above implications for the g’ situation
yields H(M,,.)= H(M,_.). Hence as H is one-one, we have M, . =M, .. In
particular, B, . = B,,. But this holds for all n, and we clearly have vy,.,=
SUPn<w By,n a0d ¥ i1 = SUPn<w Br,» HENCE Yp1 = ¥, Moreover, since M, , =
M .wehave g, [ B, = 8.l By~ forallnsog,[v,.1 =g yps1,all ¥ <w.w, and
likewise for f,, f,. So we are done. O

§5. Colouring ladder systems on w,

As a first application of ® we consider the following problem. Let ) denote
the set of limit ordinals in w,. If 8 €}, a ladder on & is a strictly increasing
w-sequence cofinal in 8. A ladder system on (1 is a sequence (7, |8 € Q) such
that n; is a ladder on 8, each 8. If = <n5]8 € ) is a ladder system, by a
colouring of n we mean a sequence (ks [6 € Q) such that k, € 2, each 8. (The
idea is that we think of k;(n) as colouring the point n;(n) either black or white.
Notice that the same ordinal can be coloured both ways at the same time if it lies
on two different ladders.) A uniformisation of a colouring k of n is a function
f € 2 such that for all § € 1 there exists an n € w such that m Z n—ks(m)=
f(ns(m)). (So f colours the countable ordinals in such a way as to agree with the
colouring ks of ns on all but finitely many points.) It is easily seen that to
demand that the above n be 0 always would mean that only “trivial”’ colourings
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would have “uniformisations’. The basic question is: given a ladder system on
w,, is every colouring uniformisable?

5.1. THEOREM. Assume ®. Let n be a ladder system on w,. Then there is a
colouring k of n which cannot be uniformised.

Proor. If f €27 set

0, if (In)(Ym = n)[f(n.(m))=0];
F(f)={

1, otherwise.

This defines F: 24— 2. Let g € 28 be as in . For each § € (1, define k; € 2* by
ks(n)=1-g(8). Suppose f € 2* were to uniformise (k, [6 € 1). Then for all
8 € () there is n < w such that m = n — ks(m) = f(ns(m)); i.e. there is, for each
s€Qann<wsuchthat m=2n—1-g(8)=f(ns(m)). But by ® thereis § €
such that F(f|8) = g(6). Fixing this 8, therefore, we have g(8) =0« F(f]8) =
0e@n)(Ym 2 n)[f(ns(m)) =0l 3n)(Vm zn)(1-¢(8)=0)og(d)=1, a
contradiction. Hence (ks ’ é € O) has no uniformisation. O

ReEmMARK. Examination of the above proof will show that the colouring k
cannot even be uniformised on a club subset of Q.

If follows from 5.1 that if 2" = N, (say), then any ladder system on w, has a
non-uniformisable colouring. We cannot, however, avoid all use of extra
assumptions as our next result shows.

By MA (Martin’s Axiom) we mean the following assertion: if P is a poset
satisfying c.c.c., and if & is a collection of at most fewer than 2™ dense subsets of
P, then P has an F-generic subset. It is known that 2" = &, — MA but that
MA + 2" >N, is consistent with ZFC,

5.2. THEOREM. Assume MA+2" >N, Let n =(n, ]a € Q) be a ladder
system. Then every colouring of n is uniformisable.

Proor. Letk = (k, [a € (1) be a colouring of 7. Let P consist of the set of all
pairs (X, h) such that:

(i) X is a finite subset of {;

(i) h:Usexran(n.)— o;

(i) Va € X)(An €E w)(¥Ym > n)[(h(n.(m)) = k.(m)].

Regard P as a poset under the ordering (X', h" ) =(X,h)<> X' D X&h' D h.

CLaM. P satisfies the c.c.c.
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Proor oF CLamm. Let A ={(X,, h,)
P. We show that A contains a pair of distinct, compatible elements, and hence
that P satisfies the c.c.c.

We may assume that for all v < w,, | X, | = p. Let (8., - -, 8%) be the canonical
enumeration of X.. Set 8%=0.

v < w,} be a set of distinct elements of

Let H\(v)=max(X, Nv). Then H, is regressive on o, — w, sO on some
stationary set S; C w;, H, is constant with value, say, «;. We may assume that for
some q (1=q=p), 8 =H,(v)=«, forall vE€S,. Let §,= {v(‘y)"y < w}.

Let Hy(v(y))=sup{v(y) N {nms.,..(m)[I=1,--,p;m < w}. Then H, is re-
gressive on S, so there is S> C S| such that §; is stationary and H, is constant on
S,, say with value a,.

Clearly, there is a stationary set S; C S, such that h,., ]« is independent of
v € Ss.

Let C={y|B<y—[v(B)<y&max X,;5,<y]}. Clearly C is club in o,. Let
B,y € CNS; be limit ordinals. Then (X, 1), huge1y) and (X, .1, buy) are
compatible. The claim is proved.

For a« € Q now, set D, = {(X,h)ePfa € X}.
CLamM. Each D, is dense in P.

ProoF oF CramM. Let (X, h)EP. We show that (X, h) has an extension
in D,. If a € X there is nothing to prove, so we shall assume otherwise.
Since 7. is cofinal in a and X is finite, there is n € @ such that
(Vm >n)[n.(m) & Uscxran(ns)]. Let X'=XU{a}, and define
h': Usex ran(n;)— o by:

h(o), if o€dom(h),
h(a)={

ko(m), if o&dom(h) and o =n.(m).

Clearly, by our above remark, (X', h') € P. Moreover (X' h")=(X,h) and
(X', h"y€ D,. This proves the claim.

By MA, let G be {D. |a € Q)-generic on P. Set h=
U {h’](BX’)[(X’, h'y€ G]}. Clearly, h is a function from a subset of w, into w.
Moreover,

(Va € Q){ran(n.) C dom(h)& (3n € w)(¥Ym > n)[h(n.(m)) = k.(m)]}.

Let h:w,— o extend h. Then h is a uniformisation of k. The theorem is
proved. g
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5.3. COROLLARY. Assume MA +2% >N, Then & fails. 0

§6. Whitehead groups

For a background to the Whitehead Problem, we refer the reader to [3]. The
undecidability of the problem was proved by Shelah in [4]. In order to give more
indication of the motivation leading to the formulation of ®, we sketch (without
full proofs or definitions being given) a result related to this problem.

6.1. First we prove that 2%<2"—>0, where O says: if (f, In €2%)
is such that f,:w,—2% then there is 7 €2* such that the set
(6€Ew|(@FpE2) [ 16=f,16&p16=n16&p(8)#7(8)} is stationary.
Briefly, the idea is this. For § < w,, n €2°% h:8 — 2“, let F(n, h) =0 if there is
p €2° such that n Cp, f,18 = h, and p(8) =0, and set F(n, h) =1 otherwise.
Since we may regard any such pair (n, h) as a single function mapping & into
2 x2“ we may apply 4.1 (2) to get a p € 2* such that for every n € 2 and every
h:w,—2% {6€ wllF(n [8,h18)=p(8)} is stationary. Now set n(a)=1-
p(a), and let h = f, in the above to see that n is as required.

6.2. The result on W-groups we wish to indicate is the following. Assume
2% <2 Let G = U, .., G, where {G,} is an increasing, continuous sequence of
countable abelian groups. If {v € wlle/G, is not free} € %, then G is not a
W -group. (This was shown by Shelah to follow from <.) Briefly, the idea is to
define, for n €2%, a group H, and an epimorphism h,: H, = Gaomn) With
Ker(h,)=2Z, so that n<p—>H,<<H,&h, =h,[H, The definition is by
induction on dom(n). For each n we can define Hpn, by, i=0,1, so
that if gi: Guomey1— Hivy is a homomorphism with hnyiyegi =1, then
8ol Gaommy # &1l Gaomen)- (See [4].) If now G was a W-group, then for every
n €2“ there would be g,: G — H, with h,°g, =1. By 0, for some n €2°,
8 < wy, 1 Xi)CT iy gl Gs = go] Gs, contrary to the construction.

§7. Further remarks

7.1. Generalising 4.1 (2) we can prove that if u is regular, and for some
6 <u,2° = A"* <2 then the conclusion of 4.1 (2) holds with u in place of w,
(in the proof, 8 takes the place of w).

7.2. Connected with 5.1 we may also prove the following. For § € Q}, let D;
be a non-principal ultrafilter on w. A (D, | § € Q)-uniformisation of a colouring k
of a ladder system 75 is a function f €& 2“ such that for each 8 €1, {n €
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® |f(ns(n)) = ks (n)} € Ds. Using ® we can prove that every ladder system has
a colouring which is not (D; | & € Q)-uniformisable.
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